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Bodies that absorb, reflect or generate wave energy are submitted to mean forces. 
For moving bodies the mean forces in the direction of motion contribute to the drag 
or propulsion of the body. For flexible and deformable slender bodies swimming in 
waves at a constant forward velocity U normal t,o the crests of the waves, the mean 
rate of working Wand the mean thrust T are evaluated. When the waves are assumed 
to be not significantly affected 6y the swimming slender bodies it is found that the 
Froude efficiency of propulsion for cases without shedding of vorhicity is invariably 
given by U / ( U + c ) ,  U + c  being the phase velocity of the waves with respect to the 
body. The result remains valid when shedding small amounts of vorticity. T is 
obtained as the result of the radiation stress, and is proportional to W. 

The same efficiency can be realized by two-dimensional bodies oscillating in regular 
trains of two-dimensional waves. It is also valid for wave-making boats. For 
three-dimensional cases U / (  U+  c )  represents the upper limit when the outgoing waves 
are properly beamed. Actuator surfaces with constant loading will be interpreted as 
vortex wavemakers. 

1. Introduction 
An unbounded inviscid incompressible fluid offers no resistance to steady transla- 

tional motion of a rigid body. This is known as d’Alembert’s paradox. For a body 
that, in addition to the steady translation, deforms periodically one has the same 
paradox for the mean value of the resistance over one period (and also over a period 
of time tending to infinity). The kinetic energy in the flow varies periodically, and 
the mean rate of working by the body against the pressure in the fluid is equal to 
zero. In  a real fluid with viscosity a self-propelling body at constant (or periodic) 
forward speed must experience mean values of the thrust and drag that cancel. 
Undulatory modes of animal locomotion in water for the high-Reynolds-number 
range (say from Re = lo4 onwards) involve the generation of a mean reaction force, 
which can be estimated with an inviscid flow model that is valid outside the boundary 
layer. At sharp trailing edges an appropriate Kutta condition may be imposed. A t  
sharp trailing edges of operative tails and fins vorticity is being shed, and the mean 
rate of shedding energy into the vortex wake represents the wasted part of the mean 
rate of working by the body. In  such a theory for a swimming body in a uniform 
stream a mean thrust that balances the mean drag is necessarily associated with a 
vortex wake. 

When the oncoming flow is non-uniform, as in the case of a river streaming over 
an irregular bed, or in cases with free surface waves, a swimming body may experience 
thrust or drag without vortex shedding. Bodies that absorb, reflect or generate wave 
energy are submitted to mean forces. Hence in generating propulsion in non-uniform 
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flow conditions one may distinguish two mechanisms, one that involves vortex 
shedding and another one that does not depend on vortex shedding. The mean thrust 
Ton the body, doing useful work at a rate FU (where U is the swimming speed), and 
the mean rate of working by the body can be decomposed into two far-field 
components, a vortex and a wave component. The present paper is mainly concerned 
with the Froude efficiency q=?i 'U/r  in several examples without vortex shedding. 

In  $2 the case of slender bodies in a regular train of surface waves is discussed. 
In an earlier version of slender-body theory worked out by Coene (1975) for swimming 
in waves, the cross-sections of the body were assumed to be undeformable during the 
swimming motions. This restriction is removed in the present paper so that peristaltic 
deformations (either passive or active) may be included. On the assumption that the 
situation at the tail dominates the generation of thrust, it was shown in the earlier 
paper that, from the volume that is effectively being swept by the tail, one half of 
the kinetic energy present due to the waves can be extracted and made available for 
propulsion. Without suggesting that animals should neglect their tails, we shall now 
concentrate on the body-wave interactions, which are complementary to the tail 
terms and also exist when the body has no operative tail involving the shedding of 
vorticity. The mean thrust or drag on the body then results from the radiation stress 
in the ambient wave, and is found to be proportional to the mean rate of working. 
The slehder-body results are obtained on the assumption that the oncoming wave 
is not significantly affected as far as the cross-flow induced at the mean swimming 
depth is concerned. The towing-tank experiments described by Coene (1977) tend to 
confirm the validity of the present variety of slender-body theory for a not-so-deeply 
submerged rigid slender delta-wing-like body. In  these experiments the body was 
provided with strain-gauge dynamometers a t  two pivots, and was towed through a 
regular head sea while the body was forced to carry out heaving and pitching 
oscillations. Upon proper adaptation of these oscillations to the oncoming waves, 
thrust could be generated at  efficiencies predicted from slender-body theory. 

In  the two-dimensional cases, discussed in $ 3, the body may swim in its own waves 
also. In  the absence of forward speed, the two-dimensional results correspond with 
those for wave-power machines and stationary vessels as discussed by Longuet-Higgins 
(1977). The results of $3 will be applied to estimate the Froude efficiency of his 
wave-making boat. In the two-dimensional cases, the calculations are based on far-field 
bilinear potential-flow results for bodies carrying a constant circulation. The two- 
dimensional results are complementary to those of Sparenberg (1976) and Wu (1972), 
where the shedding of vorticity plays an essential role in the generation of propulsion 
and the extraction of wave energy. 

Several examples will be worked out in which the Froude efficiency of propulsion 
is invariably given by U I ( U + c ) .  In  the slender-body case the result is obtained by 
direct calculation of the mean thrust and the mean rate of working. In the 
two-dimensional case the far-field point of view permits the evaluation of the 
efficiency without bothering about the details at the body. In more general three- 
dimensional cases there will be losses to the sides. The beaming will be less than 
perfect, and the Froude efficiency of wavemaking and wave interaction cannot exceed 

- 

U / (  u+ c). 

2. The slender-body case 
In an earlier paper (Coene 1975) the author discussed the swimming of slender 

bodies in regular trains of waves. The propulsion problem involving the interaction 
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FIGURE 1. A slender actuator body in waves. c is positive in a 
head sea and negative in a following sea. 

of the swimming motions with the oncoming waves was worked out on the assumption 
that the situation at the tail dominates the mean rate of working, the mean thrust 
and thereby the efficiency of propulsion. It was shown that, upon proper adaptation 
of the voluntary part of the tail motions to the lateral component of the orbital 
velocity in the waves, energy can be extracted from the waves. Propulsion at a higher 
Froude efficiency than in the absence of waves can thus be generated in head seas 
as well as following seas. Whenever the tail is operative, vorticity is being shed into 
the wake. When the tail is inoperative or when the body has no tail with a sharp 
trailing edge, the body may still interact with the waves and generate a mean thrust 
or drag, while the mean rate of working by the body against the pressure forces in 
the water does not vanish. In  the present paper we shall focus our attention on these 
body-wave interactions, which are complementary to  the tail terms discussed earlier. 
Moreover, the earlier restriction as to the undeformability of the sections of the 
flexible slender body will be removed, thus allowing for peristaltic deformations. The 
results for the hydrodynamic forces on the body will be manipulated in such a way 
that a physical interpretation of the body terms as line-distributions of Lagally forces 
is possible. This, in turn, leads to a simple result for the Froude efficiency of propulsion 
in waves. The bodies we have in mind have the same symmetry as cetacean mammals, 
and the swimming motions are parallel to the plane of symmetry. 

A Cartesian coordinate system (x, y ,  z) performs a steady translation with the mean 
position of the swimming body at a mean depth d with a velocity Uin the -%-direction 
with respect to the water at rest far from the surface. A regular train of two-dimensional 
waves of amplitude a ,  wavelength A and phme velocity U + c  with respect to  the 
(2, y ,  2)-system in the +%-direction is given by the velocity potential 

(2.1) 

The velocity c is positive in a head sea and negative in a following sea. U + c  = 0 
corresponds to  the steady wave-riding case. The body is assumed to be slender. With 
e as a small slenderness parameter, the lateral dimensions are O(e1) and they are slowly 
varying functions of x and t. The body is considered to be 'stretched straight' when, 
in uniform flow conditions and without free-surface effects, the deformations of the 
cross-sections are such that no resultant normal force except buoyancy acts on any 
cross-section. With respect to these stretched straight positions for bodies performing 
peristaltic deformations, the body also carries out smoothly varying swimming 

' 

&(x,z,t) = ac exp[dxA-'(z-d)] ~os{2xA-~[x-((U+c) t ] } .  
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motions h(z, t ) ,  O ( d ) ,  in the z-direction. Thus, defining the stretched straight positions 
by F(x, y, z, t )  = 0 gives a swimming body F(X,  Y ,  2, T )  = 0 upon introduction of the 
(X, Y, 2, 5")-system with 

x = z ,  Y = y ,  z =  z-h(s , t ) ,  T = t .  (2.2) 
With $zz representing the z-component of the orbital velocity due to the waves at 
the mean swimming depth, the resultant cross-flow w*(z, t )  can be expressed as 

All velocity components in (2.3) are assumed to be O(sU) and smoothly varying. The 
velocity potential @(X, Y ,  2, T )  satisfies the transformed Laplace equation 
@/ax - (ah/aX) a/a2)2 @ + aW/a y2 + a243/aZ2 = 0. By virtue of the slender-body 
assumptions, 43 may be decomposed as follows: 

@(X, Y , Z ,  T )  = U X + @ , ( X , Z ,  T ) + @ , ( X ,  Y , Z ,  T ) +  Y(X, Y , Z ,  T ) .  (2.4) 

In (2.4), GW follows from (2.1) with (2.2). 43, is the perturbation potential of the body 
with w* = 0, 'stretched straight' along the X-axis. In Q0 the presence of the free 
surface is neglected. Starting from a known stretched straight slender-body solution 
$,(z, y, z, t ) ,  which satisfies a2$,/ay2 + a2+o/az2 = 0 near the body, one obtains 
a 0 ( X ,  Y, 2, T), which satisfies a2430/a Ya + a2@,/aZ2 = 0 near the body, by replacing 
z in $, by 2, i.e. by taking the same function @,, = 4,. Y is the potential proportional 
to w*, with the strip assumption 

(2.5) 

where $ satisfies a2$/a y2 + a2$/aZ2 = 0 and $ + 0 at infinity as in an unbounded mass 
of water. The errors that may arise near the ends of the body are assumed to be local. 

The free surface effects of the type that would also arise in the absence of the 
ambient wave eW are not accounted for in (2.4). For a given body in a given swimming 
mode, the errors involved are exponentially dependent on the mean swimming depth 
a'. Thus neglecting the free-surface effects in 43, and Y amounts to assuming that a' 
not be too small. Neglecting these free-surface effects brings out the interaction of 
the swimming body with the oncoming waves, and turns out to be equivalent to 
assuming that the ambient wave aW not be significantly affected at the free surface. 
This amounts to ignoring the free-surface origin of the ambient non-uniformity in 
which the body is swimming. Not surprisingly then, the results obtained in this 
section are independent of the dispersion relation satisfied by the gravity waves (2. l), 
and they also apply to swimming in non-uniformities associated with solid boundaries 
such as a wavy river bed. 

The boundary Conditions for a0 and Yare obtained by setting equal to zero the 
rate of change DF/DT following a particle of water. Omitting products of small 
quantities, one obtains as the boundary conditions for 43, and Y at the body: 

!Jqx, y, z, T) = W*(X, T) $( y ,  z; x, T), 

From Bernoulli's equation, one obtains in the (X, Y, 2, T)-system, with a decom- 
position for the pressure 

P = P,+P,+P,+P,, (2.8) 
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up to and including orders ea and ea loge and omitting the hydrostatic part, 

107 

(2.9) 

The lateral force 
We first discuss the lateral force L(X,  T )  per unit length in the Z-direction. By virtue 
of the definition of O,, p, does not contribute to L. The first term of p, yields a 
contribution, 0(2), 

where A(X, T )  is the virtual mass per unit length of a cylinder moving in the Z-direction, 
and is defined by the contour integral 

A(X, T )  = fX, #( y, z; x, T )  dY, (2.11) 

with # defined in (2.5). 
Upon expansion of Ow with respect to Z, one finds from the first term in pa ,  to 

o(a? 

where S ( X , T )  is the area of the cross-section. Combining (2.10) and (2.12) and 
rewriting the result in the variables x ,  t and #$, we thus obtain, to 0(2), 

{w*A(x, t ) }+pS(x ,  t )  (2.13) 

Upon introducing the coordinate system (x, ,  yl, z,, t,) fixed in the water at rest far 
from the surface, with 

5, = x - u t ,  y1 = y, 2, = 2, t,  = t ,  (2.14) 

(2.15) 
a a  a _ -  - -+ u-, 

at, at ax 
one has 

which is also a first approximation to the material time derivative, following particles 
of water. Thus the first term in (2.13) can be interpreted &B the reaction force on the 
body per unit length due to the time rate of change of lateral momentum of water 
slices of unit thickness. Rewriting the last term in (2.13) in the form 

(2.16) 

shows that this term is due to the vertical component of the pressure gradient in the 
waves. Even with undeformable cross-sections, A and S are time-dependent with 
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respect to t,. Thus the result for the lateral force, obtained earlier for undeformable 
cross-sections, is found to remain valid in the more general case of deformable 
cross-sections. 

The lateral force can also be interpreted as a Lagally force upon rewriting (2.13), 
using (2.3) and (2.14), in the form 

(2.17) 

The second term on the left-hand side of (2.17) represents the inertial effect of water 
slices (of unit thickness) displaced by the body in the form of the rate of change of 
their lateral momentum. The f i s t  term on the right-hand side is minus the rate of 
change of lateral momentum of the cross-flow induced by doublets with a vertical 
axis and moment proportional to w*(A +S). The last term is the vertical component 
of the force on a source of strength &"/at, in a vertical velocity field 4:". 

The mean thrust 
The mean thrust may be expressed as 

(2.18) 

In Appendix A the O ( 8 )  and O(e4) contributions to the mean thrust are derived. The 
result can be decomposed in a tail term and a body term Fb: 

with 

- 
T = %+Tb, (2.19) 

(2.20) 

1 
wzx + U -  Sdx+p (A+S)w*q5zzxdX. (2.21) c - 

and % = p J  0 (dZX+hq5* I(: :?) 
The tail term (2.20) was discussed in some detail by Coene (1975) on the assumption 
that the situation at the tail dominates the generation of propulsion. We shall now 
concentrate on the body term (2.21), which is of interaction type and vanishes in the 
absence of the ambient wave. It is complementary to the tail term, but also arises 
for bodies without an operative tail that involves vortex shedding. A non-vanishing 
interaction (2.21) indicates that by virtue of the presence of the ambient wave thrust 
or drag can be generated without entailing vorticity. The first integral on the right- 
hand side of (2.21) was not retained in the 1975 paper. The steady wave-riding case 
and peristaltic deformations were not included there. On the other hand, as shown in 
Appendix A, the term proportional to hq5zZx yields an O(e4) contribution in the thrust 
for undeformable sections (with i3fi'/at = 0) also, and it would have been consistent 
to retain it on the assumption that h is O(d).  The integrand in the first integral of 
(2.21) can be interpreted as the mean force, per unit length, on a source of strength 
@/at+ Ua/ax) S) in a velocity field with a horizontal component q5zx + hq5zzx. The 
second integral in (2.21) is the mean horizontal force on a distribution of doublets 
with vertical axis and a moment w*(A + S) in a velocity field with vertical gradient 
G Z X .  

The O(sa) contribution vanishes in the mean for undeformable sections and 
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oscillatory $& In the case of steady wave-riding, $& is time-independent, and a 
favourable position in the waves leads to a positive O(d)  thrust 

Tb = ps' Ug$&dx+O(P).  
0 ax 

(2.22) 

The possibility of favourable positioning is not restricted to the non-uniformities 
associated with regular waves of the type (2.1). The case of bow-wave-riding porpoises 
is well known. On the other hand a term like (2.22) depends only on the lengthwise 
pressure distribution in the non-uniformity. Obviously, such O(sa) contributions may 
also be exploited by fishes for a relative state of rest in a river with non-uniformities 
fixed with respect to the bed of the river. The first term in (2.21) also shows that, 
in the cases of unsteady wave-riding, peristaltic deformations correlated with the 
pressure wave moving along the body may lead to a mean thrust or drag O(e3) 
whenever the lateral velocities due to the peristaltic deformations are O(EU).  In  the 
expressions for the thrust both A and S are O(s212), but the results remain valid for 
planar bodies with S < A, or even in the waving-plate case with S = 0 (with, in 
addition, aA/ax 3 0 in order to avoid free vorticity for x < 1 ) ,  without the need to 
introduce higher-order terms for the contributions proportional to S. 

The mean rate of working 

The mean rate of working by the body against the pressure forces can be expressed 
as 

(2.23) 

The first term is due to the peristaltic deformations, the second one is readily obtained 
upon substitution of the lateral force (2.13). Peristaltic deformations do no work in 
the mean in the case of uniform oncoming flow, but they can do work against the 
pressure due to the ambient wave. Expressing the term p, at z = h(x, t)  (also 
appearing in (2.9) in the (X, Y, 2, T)-system with Ow) in the (2, y, 2, t)-system with 
$$ yields 

(2.24) Pa = -p  [ (%+ u z )  4: + h (:+ u:) $ ~ z  + t($z: + $P)] 

The last term is independent of x and t, and cannot contribute to (2.23). Substituting 
(2.13) and (2.24) in (2.23) and assuming S(0) = 0, S(2) = 0, A(0) = 0 but A(2) 9 0 a t  
the trailing edge gives 

w =  %+ Wb, (2.25) 

a . a  

- - -  

with 
- 

x-1 
w, = pu[@] (2.26) 

for the tail term and 

for the body term. 



110 R. Coene 

The eficiency of propulsion 

We begin by considering the O(e3) contributions in F and 7: 

Non-vanishing time-averaged O(e3) terms may occur when the peristaltic deformations 
are correlated with the leading-order term in the pressure due to  the waves. The wave 
potential (2.1) depends on the variable z- ( U + c )  t ,  so one has, invariably, 

$wt = - (U+c)$,x* 12.29) 

For periodic S and with S(0) = 0, & ( I )  = 0, wb in (2.28) may be rewritten as 

which, by virtue of (2.28) and (2.29), may be expressed as 
- 
wb = (u+c)?&+o(e4). (2.30) 

Obviously (2.30) remains valid in the case of steady wave-riding, with U + c  = 0, 
where an O ( 8 )  thrust (or drag) results from the steady pressure gradient in the wave 
without any work being done by the body. It may be observed that these O(e3) terms 
are independent of the swimming motions h(z,t). On the other hand, the O ( d )  
contributions to  T and 7 do depend on the motions h(z ,  t ) .  

As shown above, the O(e3) terms satisfy the simple relation (2.30), and, i t  will 
be shown, the O ( 8 )  terms turn out to satisfy the same relation for oscillatory 
swimming motions and peristaltic deformations at the frequency of encounter 
we = (2x/h) IU+cl. From (2.29) one readily derives, for oscillatory swimming 
motions characterized by the frequency of encounter, 

(2.31) 
aw a 
,$,Tz = z(w5Gz)-w$,Tzt = (u+c)W+IZzx’  

Moreover, with w* = w-$&, one has 

(2.33) 

On the other hand, if S(z, t )  is decomposed as S,(z) + S,(z, t ) ,  where S is periodic a t  
the frequency of encounter, then terms in S ,  do not contribute to  the mean values 
O(e4). The same is true for the apparent mass terms proportional to A. Thus, using 
(2.31), (2.32) and (2.33), one obtains 

wb = (U+c)Tb+o(e5) ,  (2.34) 

which extends (2.30) to include the O(e4) terms. I n  (2.34) Fb is obtained in the form 
of a radiation stress on an actuator body. In  the case of unsteady interaction, with 
U + c  =# 0, there is a unique relation between the mean force on the body in the 
direction of propagation of the wave and the mean rate of working by the body. 

i a  
w9:zx = w * 9 L x + s  (4;:) = w*$,Tzx* 
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For U+ c =k 0 it  also follows from (2.34) that an elastic slender body in passive recoil 
will experience no mean thrust or drag force. For U + c  < 0 a positive mean thrust 
is obtained at a negative mean rate of working, implying that in this velocity r6gime 
damping is favourable for propulsion. On the other hand, for U + c  > 0, energy 
extraction by the body is invariably associated with drag. It should be noted that, 
by contrast, interactions involving the shedding of vorticity by an operative tail can 
be used to generate thrust by energy extraction in any velocity rhgime, as shown by 
Coene (1975). 

The result (2.34) implies a simple expression for the Froude efficiency of propulsion. 
Including terms O ( 8 )  and O(e4) in Tb and vb, one has, invariably, 

(2.35) 

It follows from (2.35) that in a head sea with c > 0 one has T/lb < 1 from the body 
terms. In  a following sea with 0 < u + c  < u one has T/lb > 1. In the following sea 
with U + c  < 0 positive Fb can be obtained at negative Wb only, as observed in the 
discussion of (2.34). In  the special case of steady wave riding with U + c  = 0, an O(e3) 
thrust may be derived, by proper positioning in the wave, at  ‘infinite efficiency’, i.e. 
without doing any work. 

In  Coene (1975) it  was shown that the interactions of the motions of the tail with 
the oncoming waves can lead to rlt > 1 in all velocity rhgimes. Comparison of the ‘tail 
terms’ and the ‘body terms’ indicates that in principle the body terms tend to be 
less attractive than the tail terms in a head sea. In a following sea, however, the body 
terms may be significant, especially in those cases involving O(es) contributions to 
the propulsion. 

A unified treatment of the various contributions is beyond the scope of the present 
paper. Before proceeding to the two-dimensional case, however, we shall discuss a 
special swimming problem for a slender body with a weakly operative tail in some 
detail. The equations of motion of the body are 

1 (2.36) 

with L given by (2.13). 
A particular solution n(x,t) of (2.36) is obtained by equating the local time rate 

of change of the lateral momentum of the body and the local lateral force exerted 
on the body by the time-varying part of the pressure of the water: 

a% 
ps- = E .  

ate 
(2.37) 

Solutions & of (2.37) represent a passive flexible recoil mode involving no bending 
moments in the body. Restricting ourselves to the cases with undeformable sections, 
(2.37) implies that the local mean rate of working is equal to zero: 

2 at at 
aE 
at 

--Z(X,t) = 

Upon integration with respect to x, one has 

(2.38) 
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and by virtue of (2.34) one has, for U +  c 4 0 ,  

5 = 0, (2.40) 

for the flexible recoil mode defined by (2.37). 

S(x)  = 0 and vanishing cross-flow : 
We now note that (2.36) can be satisfied, rather trivially, by a waving plate, with 

ali ali 
w*(x, t )  = -+ U--(L$* = 0. 

at ax 
(2.41) 

A waving plate satisfying (2.41) would cause no perturbations in the flow. Thus an 
inoperative tail behaving like a waving plate with vanishing cross-flow may have a 
sharp trailing edge without shedding vorticity . 

The general case of swimming motions in waves can be decomposed as 

h(x, t )  = xcx:, t )  +f@, t ) ,  (2.42) 

where n is the flexible recoil mode, being passive and a solution of (2.36), whilef 
represents the voluntary part, which may or may not be correlated with the oncoming 
waves. The equations of motion (2.36) are linear in q5:, so f needs to be a homogeneous 
solution of (2.36) in the absence of waves only. 

With the additional assumption f < n at the tail, and retaining terms linear in f 
only, the tail terms (2.21) and (2.26) yield 

Using (2.29) and (2.41), one finds, at x=2,  

ali 
( U + c ) - .  

ali 
at ax 
-=-  

(2.43) 

(2.45) 

Substituting (2.45) in (2.44) then shows, upon comparison with (2.43), that 
- w, = ( U + C ) T .  (2.46) 

Thus, rather surprisingly, even with a weakly operative tail, involving the shedding 
of vorticity, the efficiency of propulsion is still given by U / (  U +  c ) .  As shown by Coene 
(1975), the other possibilities with f x f i  andf $ at the tail yield other efficiencies 
for the tail terms. 

Discussion 
The results of the present section indicate that U / ( U + c )  is important for the 
evaluation of the propulsion of slender bodies interacting with waves. It may be of 
interest to note that this number also has a simple geometrical significance. In  a 
correlated swimming mode all parts of the body will oscillate a t  the frequency of 
encounter we = (2x/A) ( ( U + c l ) .  In the coordinate system (2.14) fixed to the water 
a t  rest far from the surface, the wavelength ,u of the tracks of the body sections follow 
from the correlation condition (I U +  cl)/A = U / y ,  implying 

(2.47) 
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FIQURE 2. Two-dimensional swimming body with incoming and outgoing waves at infinity. 

thus equating the efficiency of propulsion to the ratio of two wavelengths. Com- 
paring the expression (2.17) for the momentaneous O(E3) lateral force and (2.21) 
for the mean thrust O(e3) and O(6’) shows that they involve the same line distribution 
of sources and doublets at z = h(x, t ) .  The O ( 8 )  and O(e4) mean thrust T’and the mean 
rate of working depend on the geometry of the body sections only as far as the 
surface area S and the virtual mass proportional to A are concerned. The slender body 
may be replaced by an equivalent slender body with elliptic sections with horizontal 
axis b and vertical axis r related to S and A by 8 = inrb and A = $b2. In  evaluating 
the efficiency of propulsion, it was found that for cases without shedding vorticity 
(or only relatively small amounts of it) the details of the geometry and the swimming 
mode (of course remaining within the scope of the slender-body assumptions) are 
irrelevant. The Froude efficiency is invariably given by U / (  U +  c). 

It should be observed that the near-field calculations and the distinction in body 
terms and tail terms is possible only by virtue of the slender-body assumptions. In  
the present context with ambient waves the use of a far-field concept such as ‘wave 
drag’ may be confusing, but some remarks on it are in order. The steady wave drag 
(with the body rigidly constrained and towed steadily at speed U and depth d) ,  which 
also arises in the absence of ambient waves, was not accounted for, but may be given 
the same status as the viscous drag, which must also be balanced in the mean by 
the thrust generated by periodic swimming. The thrust or drag and the rate of 
working associated with unsteady wavemaking of the type also arising in the absence 
of ambient waves will be discussed in $3. There it will be shown that the efficiency 
of propulsion by wavemaking has a definite value in the two-dimensional case 
( U / (  U + c) !) which cannot be exceeded in the three-dimensional case. 

3. The two-dimensional case! 
We consider two-dimensional potential flows around bodies swimming at constant 

mean horizontal velocity U with respect to the system (zl, zl, tl) fixed to the deep 
water at rest far from the surface. The bodies are assumed to perform periodic 
swimming motions without shedding vorticity. Bodies such as hydrofoils with sharp 
trailing edges may be allowed to carry a non-vanishing constant bound circulation. 

As indicated in figure 2, there is an incoming head sea of amplitude a and phase 
velocity c at x1 = - 00. At the same time there is an outgoing wave of amplitude a‘ 
and phase velocity c‘. A t  x1 = 00 there is an outgoing wave of amplitude b and phase 
velocity c. Finally, at z1 = 00 we have an incoming wave of amplitude b‘ and phase 
velocity c‘. 

The introduction of the four waves permits a rather general discussion of the 
two-dimensional swimming problem in waves. The flow is periodic in a reference 
system moving steadily (at constant U )  with the swimming body, Far from the body 
the incoming and outgoing waves are also periodic in the (xl, zl, tl)-system. 
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By virtue of the periodicity of the flow it is possible to establish unique relations 
between the mean thrust Fb on the body, the mean rate of working rb and the waves 
far from the body. 

As shown in Appendix B, the mean excess momentum flux for the superposition 
of waves a and a’ a t  x1 = - 00 is given by 

- 
F(xl = - co) = +pq(a2+af2). (3.1) 

Similarly, one has F(xl = 00) = i pg (b2+b’2 ) .  (3.2) 
- 

The mean rate at which momentum 7 in the x1 direction in the flow is being increased 
follows from (B 14) as 

Using (3.1 k(3.3) yields for the mean thrust Tb (positive in the direction of propagation, 
i.e. in the negative x1 direction) 

- 
Tb = P(z,  = OO)-P(Z,  = - X I ) +  UI 

(b2 - a2) +I 2u+c’ (b‘2 -af2)] 

C C 
(3.4) 

On the other hand, the influx of energy at x1 = - 00 is found in Appendix B as 
- 
W(Zl = - 00)  = :pg(ca2+c’a’2). 

V(xl = 00)  = apg(cb2+c’b’2). (3-6) 

UE = +pgU(b2-a2+b’2-a’2). (3.7) 

(3.5) 

Similarly, one has for the outflux at xl = 00 

The mean rate at which wave energy is being added is obtained from (B 14) as 

The mean rate of working by the thrust on the flow in the (xl, zl, t,)-system is given 
by -Fb U .  Thus the power balance, using (3.4)-(3.7), may be written as 

- 
w ~ = ~ b ~ + ~ ( ~ l = c o ) - ~ ( ~ ~ = - ~ ) + u ~  

In the terminology of $2, we note that Fb and v b ,  as given by (3.4) and (3.8), are 

Inspection of the expressions (3.4) and (3.8) indicates that in two main cases the 
efficiency of propulsion is invariably of the same form as the efficiency obtained in 
$2 for slender bodies in waves. We distinguish two main cases: 

0 ( € 2 ) .  

(3.10) 

We shall now discuss some examples of the use of the expressions (3.4) and (3.8). 
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Propuleion by wavemaking 

In case (i) one may assume that there is only one outgoing wave at x1 = 00 

(a = a‘ = b’ = 0 but b =#= 0) which is being generated by the body. From (3.4) and (3.8) 
we have 

I 
(3.11) 

g u  u 
q=--=u+c. wb 

Thus (3.11) is valid for a body swimming in its own waves, and i t  is obvious that 
these results are also valid for bodies which are not completely submerged. The 
expressions (3.11) also apply to Longuet-Higgins’ (1977) wavemaking boat with a 
Salter cam which oscillates at the stern and generates nearly two-dimensional surface 
waves. At a frequency of 3 Hz of the oscillator, his model waa propelled at a speed 
U = 0.12 m/s. With wJ2x = (U+c)/A = 3 Hz and ca = gA/2x, we obtain 
c = 0.625 m/s and h = 0.25 m. Using (3.11) yields an efficiency 7 = 16%. We note 
that the mean thrust which balances the drag (frictional + wave resistance) is larger 
(38% in the present example) with the result (3.11) than the thrust estimated from 
the outgoing wave upon neglecting the forward speed U. 

On the other hand, one may assume, in case (ii), that there is only one incoming 
wave at x1 = 00 (a = a’ = b = 0 but b‘ #= 0) and that the body is moving steadily 
with this incoming wave, i.e. U+c’ = 0. In  this case one has 

(3.12) 

which reproduces the classical result for the two-dimensional wave drag. Now 
combining the results (3.11) and (3.12) shows that the thrust generated by means of 
the outgoing waves precisely balances the ‘steady wave drag’ for 

(3.13) 

while it is obvious that the net thrust by (3.1 1) is still being generated at an efficiency 
7 = U / (  U+ c). High efficiency is obtained with c < U. From the dispersion relation 
2xca = gA it  is clear that small values of c imply small values of A. In  view of the 
linearizations that were performed in the derivation of the expressions for F b  and %$, 
the steepness b /A  of the outgoing waves and thereby the admissible values of b and 
the corresponding level of the thrust which can be generated at high efficiency are 
restricted. It would be interesting to develop a nonlinear theory for these cases but 
this is beyond the scope of the present paper. 

Critical frequency 
In  case (ii) with b2-aa = 0 and a following sea with c’ < 0, we note that for 2U+c’ = 0 
one haa from (3.4) and (3.8) 

T b  = 0, v b  = 0 for 2U+C’ = 0. (3.14) 
- 
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This shows the relevance of the group velocity c;, which for deep-water waves is given 
by c i=$‘ .  When swimming at the group velocity of the following waves with 
U = IC;~, one has 2U+c‘ = 0 and both Fb and v b  vanish. In this situation it turns 
out to be impossible to exchange energy and momentum O ( 8 )  in the mean. We note 
that in the O(8) and O(e4) slender-body results of 92 the group velocity of the waves 
did not come into the picture, since ‘free-surface’ effects were not included there. 

The frequency of encounter we when swimming at the group velocity is given by 

(3.15) we = k(U+c’l  = kU, 

which by virtue of the dispersion relation can also be expressed as 

9 
we = 8‘ (3.16) 

we is known as a critical frequency in unsteady ship hydrodynamics. Not surprisingly, 
the frequency (3.16) turns out to be of critical importance in unsteady swimming 
problems. This can also be shown as follows: 

With U = 0 and an incoming wave of amplitude a at x1 = - 00 but no incoming 
wave at z1 = 00 (b’ = 0), the outgoing wave of amplitude a’ at x1 = - a0 is the 
reflected wave and the outgoing wave of amplitude b at z1 = 00 is the transmitted 
wave. In  this case one has c‘ = -c, and the power balance yields 

w b  = apg(b2-aae+a’2)e (3.17) 
- 

The force on the body in the direction of propagation of the incoming wave is 
- 

-Tb = -fM(b2-a2-a”). (3.18) 

In  the case of power extraction one has v b  < 0, and from (3.17) one has b2 < u2-a”. 
Then with (3.18) one obtains -Fb > 0, which means that with power extraction at  
U = 0 one always has a mean force on the power absorber in the direction of 
propagation of the incoming wave, as expected. 

With U + 0 the frequency of encounter of the incident wave is 

we = k lU+cJ ,  (3.19) 

and the flow is periodic in a reference system moving steadily with the body. For 
the ‘reflected’ wave with wavenumber k’ the dispersion relation now yields 

@+ U y  = ;, (3.20) 

which is a quadratic equation for k‘, of which the discriminant ga-4gUw, vanishes 
for 

which reproduces (3.16). This alternative derivation shows, however, that for 

QJ,: 
9 4  

(3.21) 

(3.22) 

there is no ‘reflected’ wave: one has a‘ = 0, unless of course there is a following sea 
from the start. It will be clear that when there is no incoming head sea (a = 0) the 
expression ‘reflected’, which might be appropriate whenever r b  < 0 and a 4= 0, can 
be replaced by ‘ radiated ’. 

Forerunners can only exist when (3.22) is not satisfied. Inserting the numbers for 
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Longuet-Higgins’s (1977) wavemaking boat in (3.16) and (3.22) indicates that the 
frequency of oscillation (3 Hz) was probably just below the critical value. Thus, in 
addition to some radiation to the sides, there may have been some forerunners. On 
the other hand, when (3.22) is satisfied, one always has perfect beaming for otherwise 
arbitrary oscillations of the body. All the energy and the momentum is being 
transmitted to the wake, and thrust is generated at an efficiency that is invariably 
given by 7 = U / (  U + c )  for swimming oscillations at a frequency w > g/4u. 

Weak perturbations of a had sea 
In  this example we suppose that an oncoming head sea of amplitude a at x1 = - 00 

is being transmitted to a far-field wave behind the body of amplitude b with, from 

ba = aa + (&a)a + 2&ua cos $. (3.23) 

For small values of 6 4 1 one thus obtains an interaction that is of relative order 6. 
It follows from the expressions (B 14) that there can be no such order-& interaction 
with the oncoming wave ahead of the body for perturbations of relative order 6 and 
negative phase velocity. This remains true even when the critical condition (3.22) is 
not satisfied. In this case one thus obtains, to leading order, 

(3.24) 

with, invariably, 7 = U / ( U + c ) .  
Owing to the presence of the oncoming wave, the leading-order terms in the 

momentum and energy flux perturbations are perfectly beamed. It is easily seen that 
similar conclusions apply in a following sea, except with 2U+c‘ = 0. 

We note that F b  and w b  in (3.24) are of interaction type, similar to the slender-body 
results of 92, in contrast with the other examples in 53. 

The actuator-eurface analogy 
It is interesting to compare the efficiency of propulsion of an actuator body in waves, 

1 -- U 
7 = - -  u+c l+c/U’  (3.25) 

with the efficiency of an actuator surface with uniform loading in a uniform oncoming 
flow. 

1 
v = l + a , ,  (3.26) 

where a, is the axial induction factor (see figure 3). It appears that c/Uplays the role 
of the axial induction factor: 

(3.27) 

The analogy is not just a formal one. Upon replacing the vortex layer at the 
boundary of the wake far behind an actuator surface by a periodic row of discrete 
vortices, one obtains the same mean flow when the strength r of the vortices satisfies 

(3.28) - = 2a, U,  
h 

C 

= V’  

r 



118 R. Coene 

1 
+* W + a J  - w +&,I 

I 
n o r  rv I 

I h/ 
_--- 

FIQURE 3. The vortex waves at the boundary of the wake far behind an actuator surface with 
constant loading are perfectly beamed with phase velocity U + c  = U(l +a,). 

where h is the distance between two successive vortices. The rate of increase of kinetic 
energy in the flow due to discrete vortices of finite strength is infinite, but in taking 
the limit A+O one can require that T/A remains constant and equal to 2ai U. In  the 
limit the rate of increase of kinetic energy (per unit volume) is finite. The vortices 
are transported at a velocity a, U with respect to the water a t  rest outside the wake, 
and this velocity represents the phase velocity c of the travelling vortex wave 

c = a, u, (3.29) 

which reproduces (3.27). Thus ideal propellers (ai > 0) and turbines (a, < 0) are found 
to behave like vortex wavemakers with perfect beaming. 

The author is indebted to Professor J. A. Steketee for his continuous interest and 
support of the work described in this paper. 

Appendix A. The mean thrust for flexible and deformable slender bodies in 
waves 

The mean thrust may be expressed as 

The mean thrust has been discussed by Coene (1975) for flexible slender bodies 
with undeformable cross-sections, and the propulsion of the body was further 
evaluated on the assumption that the situation at the tail dominates the generation 
of thrust and the mean rate of working. A t  present we evaluate the contributions 
to (A 1) that do not depend on the situation at the tail and that are not associated 
with the shedding of vorticity. In  the present context flexibility of the body refers 
to the motions h(x, t )  with respect to the stretched straight position. The deformability 
refers to the time dependence of the cross-sections, which includes the possibility of 
peristaltic deformations. The motions h(x, t )  as well as the deformations may be either 
passive or active. 

The first term on the right-hand side of (A 1) can be evaluated by using Bernoulli’s 
equation in the form (2.9). Neglecting free-surface effects, p, does not contribute to 
the mean thrust or drag. D’Alembert’s paradox applies to bodies that deform 
periodically and do not shed vorticity. Since the kinetic energy in the flow varies 
periodically, the mean rate of working and the mean thrust or drag associated with 
p, vanish. The steady wave drag, however, also arising in the absence of an ambient 
wave, may be incorporated in the total drag which has to be balanced by the thrust. 
The drag or thrust associated with unsteady wavemaking is discussed in $3. 
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The part p ,  will contribute by virtue of the last term, involving the inclination 
of the lateral force only. From the first term of p,, a contribution that is large O(2) 
may arise : 

(A 2) 

In calculating @, in (A 2) one obtains for the value of @, at Z = 0, in terms of 
magnitudes at the mean swimming depth, z = 0, i.e. Z = -h (X ,  T ) ,  

@ J X ,  0, T )  = @,[X, - h ( X ,  T ) ,  T3 + h(X,  T )  @,,[X, - h(X,  T ) ,  + . . . 
= @:+h@;,+... . (A 3) 

Inserting (A 3) in (A 2) thus leads to contributions 

The first term in (A 4) is O(ss), and accounts for the case of steady wave riding with 
U + c  = 0 and @: independent of T .  The first term also accounts for the effect of 
peristaltic deformations correlated with the oscillatory pressure due to  the wave. The 
second term in (A 4), O ( C ) ,  due to the displacements h in the ambient wave, was 
erroneously omitted from Coene’s (1975) paper. This waa also pointed out by Coene 
(1977), who retained this term consistently for comparison with experiments. The 
third term in (A 4) vanishes since @$$+@$: is independent of X and T ,  while 
with the assumptions S(0, T )  = 0 and S(1, T )  = 0 the integral s,’ (aslax) dX vanishes 
for all T.  

Rewriting (A 4) in the variables x, t and #: thus yields for the contribution of p ,  
to the first term in (A 1) 

which includes the O(s3) and O(s4) terms. Equation (A 5 )  generalizes and supersedes 
(A 2) in the Appendix of Coene (1975). It is clear from (A 5) that the O(e3) term 
vanishes in the mean for undeformable sections and oscillatory 4:. It should be noted 
that (A 5 )  is not the complete contribution due to p,, since the second term in (A 1) 
contains another O(d) contribution due to p ,  by virtue of the inclination of the lateral 
force, which will be accounted for below. 

The contribution of p s  to the first term on the right-hand side of (A 1) is 

The integrand in (A 6), for certain values of X and T ,  is formally equivalent to the 
pressure distribution due to the motion of a cylinder with velocity w* in the Z-direction 
through water at rest. By virtue of (2.5) one may rewrite (A 6), to leading order, as 

Equation (A7) can be evaluated (to O(r?)) upon introduction of the system 
( X l ,  q, 2 1 ,  q), with 

Xl = X-UT, & =  Y ,  Z , = Z ,  q = T .  (A 8) 
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The kinetic energy of the water per unit length in the XI direction is f p A ~ * ~ .  A time 
6T, later the kinetic energy has changed by an amount f p [ a ( A ~ * ~ ) / a T , ]  6T,, which is 
equal to the amount of work done by the body against the pressure forces in the water: 

The first term on the right-hand side of (A 9) is the amount of work done in the 
2, direction. The second term represents the amount of work done by the thrust 
in the X, direction and the work done by the peristaltic deformations. With 
a/aTl = a/aT+ U a / a X  one thus obtains for the thrust, from p,, per unit length, 

Adding the second term in (A l), using (2.13), in the variables x,t and $2, 

the total mean thrust can be expressed as {(A 5) + (A 10) + (A 11)): 

which generalizes and supersedes (A 6) and (3.10) of Coene (1975). Upon manipulation 
of (A 12) with the assumptions S(0)  = 0, S(1) = 0, A(0) = 0, A(2) 9 0, the mean thrust 
may be rewritten as 

which generalizes and supersedes (3.11) of Coene (1975). 

Appendix B. Some properties of superimposed deepwater waves 

as 
$ = acekZ cos{k(x-ct)}. 

In (B 1) c is the phase velocity, and the wavenumber k is related to the wavelength 
A by k = 2nA-l. The water surface is given by 

A two-dimensional sinusoidal wave on deep water of amplitude a can be expressed 

(B 1 )  

5 = -a sin{k(x-ct)}. (B 2) 

c’k = g. (B 3) 

For deep-water waves the dispersion relation can be expressed as 

We now evaluate some properties that are relevant to propulsion problems. 
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The time-averaged horizontal component of momentum per unit surface is given 

The excess potential energy due to the wave per unit horizontal area is given by 

V = p g  zdz=$pga2. (B 5 )  

i7 = f P r n 2 - 0  = $Maa. (B 6) 

E =  V + K = f p p a .  (B 7) 

- I," 
The kinetic energy in the waves per unit horizontal area has the same magnitude: 

Thus for the total energy per unit surface one has the well-known result 
- - -  

The mean flux of horizontal momentum across a vertical plane 5 = const per unit 
length parallel to the crests of the waves may be expressed as 

where 8 in the flux in the absence of waves. Subtracting&, we obtain the mean excess 
flux due to the waves (with p = po+pe  = pgz+pe) : 

From Bernoulli's equation we have 

With -g6 = (#t)z-o, one obtains to second order: 
- 1 7  

- 
p = tm (#t),-o = $ma8. 

The mean value of the energy flux across a vertical plane z = const. per unit length 
in the direction of the crests of the waves is given, to second order, by 

We now consider a superposition of two waves #l+a = $l+#e,  and we distinguish 
two cases, (i) and (ii). 

(i) c1 4 c,  with, at z = 0, 

Upon replacing the time average per period by the long-time average, the bilinear 
quantities evaluated above for a single wave are readily found for the combined flow : 
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(ii) c1 = c, = c ,  with, at z = 0, 

1 $1 = a,c cos{k(s-ct)} ,  

$, = a,c cos{k(z-ct)++}. 

It is easily verified that (€3 15) combine to give a simple wave with the same phme 
velocity c .  The amplitude a is given by 

a2 = a: + a: + 2a, a, cos $, (B 16) 

and the expressions obtained for single waves remain valid. It follows that only in 
cam (ii) with c1 = c, = c does one have interaction whenever cos $ =k 0. 
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